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Abstract

Using asymptotics, the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell vibrating in the beam

mode (viz. circumferential wave order n ¼ 1) are studied. Initially, the uncoupled wavenumbers of the acoustic fluid and

the cylindrical shell structure are discussed. Simple closed form expressions for the structural wavenumbers (longitudinal,

torsional and bending) are derived using asymptotic methods for low- and high-frequencies. It is found that at low

frequencies the cylinder in the beam mode behaves like a Timoshenko beam. Next, the coupled dispersion equation of the

system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added

fluid-loading term involving a parameter m due to the coupling. An asymptotic expansion involving m is substituted in this

equation. Analytical expressions are derived for the coupled wavenumbers (as modifications to the uncoupled

wavenumbers) separately for low- and high-frequency ranges and further, within each frequency range, for large and

small values of m. Only the flexural wavenumber, the first rigid duct acoustic cut-on wavenumber and the first pressure-

release acoustic cut-on wavenumber are considered. The general trend found is that for small m, the coupled wavenumbers

are close to the in vacuo structural wavenumber and the wavenumbers of the rigid-acoustic duct. With increasing m, the
perturbations increase, until the coupled wavenumbers are better identified as perturbations to the pressure-release

wavenumbers. The systematic derivation for the separate cases of small and large m gives more insight into the physics and

helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values.

Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an

intersection in the coupled case, but a gap is created at that frequency. This method of asymptotics is simple to implement

using a symbolic computation package (like Maple).

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Wave propagation in fluid-filled cylindrical shells is a classical topic of interest to the structural acoustics
community. This is evidenced by the large volume of literature on the subject. In contrast to the planar
fluid–structure interaction problems, the fluid–shell system poses an additional challenge by having the motion
in the three coordinate directions coupled due to the shell curvature. In this context, the efforts of some
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researchers have been in finding the fluid-shell coupled wavenumbers. They have numerically solved the
coupled dispersion equation by varying individual parameters [1–4] and also discussed the physics related to
the coupled wavenumbers. However, this numerical root-finding approach is laborious, and the solutions are
not amenable to easy understanding. For example, to understand the influence of the fluid on the structure or
vice versa, an analytical expression for the coupled wavenumbers would be very useful. It would then be easy
to identify the coupled wavenumbers as a modification to the uncoupled wavenumbers. To this end, the
method of asymptotics appears to be a seemingly indispensable approach as it leads to analytical expressions
for the coupled wavenumbers, which conveniently are perturbations to the uncoupled wavenumbers.

The essence of asymptotic analysis is to arrive at a solution for a complicated system which in some way is
near to a solvable simpler system with known analytical solutions. Using asymptotics, analytical expressions
can be found for the complicated system also and these expressions are slightly modified (or perturbed)
versions of those of the simpler system. This method is widely prevalent in solving for weakly nonlinear
systems [5]. The method has also been widely used in the field of nonlinear acoustics [6].

Defining the fluid-loading effect in the form of a perturbation parameter, asymptotic analysis has been used
to analyze structures in contact with infinite acoustic domains for plane [7–9] and cylindrical [10,11]
geometries. In contrast, for systems with finite acoustic domains, such as a flexible acoustic duct, studies have
been mainly of experimental [12–14] or of numerical [1,2,15,16] nature. Applications of the asymptotic method
to flexible acoustic ducts have not come to our notice. Studies using asymptotic methods to find the coupled
wavenumbers of structural acoustic systems in two different geometries have been recently carried out by us
[17,18].

In this study, we consider an infinite fluid-filled flexible circular cylindrical shell (see Fig. 1). Our interest is
to find the coupled structural acoustic wavenumbers for this system as perturbations to the uncoupled
structural and the acoustic wavenumbers. Numerical solutions to this problem have already been presented
[1]. Here, we wish to bring more insight into the character of the wavenumber solutions using asymptotics.

As a representative case, we choose to study the beam mode (viz. circumferential wave order n ¼ 1) in detail
in the present article. The higher order circumferential modes (n41) closely resemble this mode (in a
qualitative sense) [19]. Further, n ¼ 1 mode is the lowest order mode in which the vibrations in all three
directions (viz. radial, longitudinal and torsional) are coupled. In contrast, for the axisymmetric mode the
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Fig. 1. Schematic of the model showing the fluid-filled flexible cylindrical shell of infinite length. The cylindrical coordinate system ðr; y;xÞ
used for the study is also shown.
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torsional displacement is uncoupled from the other two. For the axisymmetric mode, we have found analytical
expressions for the coupled wavenumbers using asymptotic methods [18].

For the acoustic fluid in a cylindrical duct, simple closed form expressions for the wavenumbers in the n ¼ 1
mode are well-known. However, the dispersion relation for the cylindrical shell is an unwieldy polynomial
equation. Hence, in the first part of the article, simple expressions for the in vacuo shell wavenumbers will be
derived for low and high frequencies using asymptotics. In the process of derivation, we will show that at low
frequencies the uncoupled shell (equivalently the in vacuo shell) behaves as a Timoshenko beam, whereas at
high frequencies the shell resembles a plate of identical thickness [19].

Next, it will be shown that the dispersion relation of the coupled system is related to the uncoupled
structural and acoustic system through a fluid-loading parameter. Using this as the perturbation parameter,
we will find the coupled wavenumber expressions for small and large fluid-loading. The inherent nature of the
asymptotic method provides analytical expressions for the coupled wavenumbers in terms of the uncoupled
wavenumber expressions and a correction factor involving the fluid-loading parameter.

2. Uncoupled analysis

In this section, we shall derive expressions for the wavenumbers of the acoustic medium in a cylindrical duct
and the wavenumbers of an infinite cylindrical shell vibrating in vacuum. These shall be referred to as the
uncoupled acoustic and structural wavenumbers, respectively. Note, the uncoupled structural wavenumber is
simply the in vacuo wavenumber. On the other hand, the uncoupled acoustic wavenumber is the wavenumber
of the acoustic wave in the infinite cylindrical duct. This wavenumber depends on the acoustic boundary
condition on the cylinder walls and can have two forms: the first when the cylinder wall is rigid (acoustic
velocity is zero) and the second when the cylinder wall has a pressure-release condition (acoustic pressure is
zero). The uncoupled acoustic wavenumber is presented in these two forms because as will be seen later, the
coupled wavenumbers will turn out to be perturbations to these two forms under various situations.
Throughout the article a harmonic time dependence of the form e�iot is assumed. Further, in this article we
shall find only the real positive wavenumbers which correspond to waves traveling in the þx direction.

2.1. The uncoupled acoustic wavenumbers (kr
1 and kp

1)

A wave solution traveling in the þx direction for the acoustic pressure (p) in the n ¼ 1 mode is given by [7]

pðr; y;x; tÞ ¼ PJ1ðksrÞ cosðyÞeikxxe�iot,

where the arbitrary constant P gives the amplitude and J1 denotes the first-order Bessel function of the first
kind. Denoting the sonic velocity of the medium by cf , the values of ks and kx for the first rigid-walled and
pressure-release cut-on modes are given in Table 1. The non-dimensional axial wavenumber (kxa)
corresponding to these two waves will be denoted by kr

1 and kp
1, respectively. Note, to satisfy the rigid-

walled or the pressure-release boundary condition on the cylinder wall we have

J 01ðksaÞ ¼ 0; for a rigid-walled cylindrical duct and (1a)

J1ðksaÞ ¼ 0; for a pressure release cylindrical duct. (1b)
ble 1

n-dimensional wavenumbers for the first cut-on mode of a cylindrical duct, with n ¼ 1, under different boundary conditions

de ksa Non-dimensionalised wavenumber (kxa)

st rigid-walled 1.841
kr
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2a2

c2f
� 1:8412

s
st pressure-release 3.832

kp
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2a2

c2f
� 3:8322

s
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The presence of a flexible structure modifies the boundary conditions and hence these wavenumbers kr
1 and kp

1.
In Section 3, the modified wavenumbers corresponding to these two waves will be found using asymptotics.
2.2. Uncoupled structural wavenumbers

Using the Donell–Mushtari theory [20], the non-dimensional governing equation for the in vacuo free
vibration in the beam mode of an infinite cylindrical shell of radius a, thickness h, at a circular frequency o is
given by

�O2 þ k2 þ
1� n
2

1

2
ð1þ nÞk nk

1

2
ð1þ nÞk �O2 þ

1� n
2

k2 þ 1 1

nk 1 �O2 þ 1þ b2ðk2 þ 1Þ2

2
666664

3
777775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{L

u

v

w

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;, (2)

where u, v, w are the vibrational amplitudes in the axial, circumferential and radial directions, respectively. The
shell material has a Poisson’s ratio n and an extensional wave speed of cL. The 3� 3 square matrix in the
equation above shall be referred to as L. The non-dimensional terms in L are given by O ¼ oa=cL, b

2
¼

h2=12a2 and k ¼ kxa.
It is apparent from the non-diagonal form of L that the essential complication introduced due to the shell

curvature is coupling of the motions in the three perpendicular directions. The radial and circumferential
directions are kinematically coupled through the curvature. The axial and radial vibrations are coupled due to
the Poisson’s effect [21].

The free wavenumbers are obtained by equating the determinant of L to zero (viz., the dispersion equation)
and solving for k. Using the Donell–Mushtari model, the dispersion relation for the in vacuo cylindrical shell is
given by

ð�1
2
nb2 þ 1

2
b2Þk8 þ ð�3

2
O2b2 � 2nb2 þ 1

2
nO2b2 þ 2b2Þk6

þ ð1
2
nO2 þ O4b2 � 3nb2 � 9

2
O2b2 þ 1

2
� 1

2
n2 þ 1

2
n3 þ 3

2
nO2b2 þ 3b2 � 1

2
n� 1

2
O2Þk4

þ ð2O4b2 � 1
2nO

4 þ 3
2nO

2 � 2nb2 � 9
2O

2b2 þ n2O2 þ 3
2nO

2b2 � 5
2O

2 þ 2b2 þ 3
2O

4Þk2

þ ðO4b2 þ 5
2
O4 � O6 � 1

2
nO4 � 1

2
nb2 þ 1

2
b2 � 3

2
O2b2 þ 1

2
nO2b2 þ nO2 � O2Þ ¼ 0. (3)

The equation above is an eighth-order polynomial equation in k and therefore there are four wavenumber
solutions (modulo sign) at every frequency. Fuller [19] numerically solved the equation and presented the free
wave characteristics of the four wavenumber branches. Three of these wavenumbers are real corresponding to
propagating waves.

In the following, we shall find the asymptotic expressions for the real wavenumbers arising from Eq. (3).
These shall be denoted by kB, kL and kT for the bending, longitudinal and torsional wavenumbers,
respectively. Separate expressions will be derived for high and low frequencies. To our knowledge, these
expressions have not been presented so far in the literature. In Section 3, when the coupled wavenumber
expressions are derived, they will turn out to be perturbations to these uncoupled wavenumber expressions.
2.2.1. Structural wavenumbers at high frequencies (kB; kL;kT )

For modeling the dynamics at high frequencies, we substitute O ¼ O0=�, where 0o�51 and O0 is an Oð1Þ
quantity. We know that the longitudinal and torsional wavenumbers are directly proportional to the
frequency. Thus, the wavenumbers in these cases are appropriately scaled as k ¼ k=� (k being an Oð1Þ
quantity). However, the flexural wavenumber being proportional to the square root of O, is scaled as
k ¼ k=

ffiffi
�
p

.
Using these substitutions in Eq. (3) and employing a regular perturbation method [5] with � as the pertur-

bation parameter, we find the wavenumber solutions for the high frequency range (given by Eqs. (4)–(6)).
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Details of the derivation for the bending wavenumber are shown in Box 1, while Box 2 contains the derivation
for the torsional and the longitudinal wavenumbers.

In Fig. 2, an overlaid plot of the above solutions (Eqs. (4)–(6)), along with the numerical solution of the
dispersion Eq. (3) is presented. The parameters chosen are h=a ¼ 0:05 and n ¼ 0:25. Unless, otherwise
mentioned these structural parameter values shall be used for all subsequent plots.
Box 1
Derivation of the asymptotic expressions for the in vacuo bending wavenumber of a cylindrical
shell vibrating in the beam mode (n ¼ 1) at high frequencies.

We substitute O ¼ O0=�, k ¼ k=
ffiffi
�
p

in equation (3). In the resulting expression we put k ¼ a0 þ a1�
and perform a series expansion about � to get

�O06 þ O04b2a4
0 þ ½2O0

4b2a2
0 þ 1

2O
02a6

0nb
2 þ 4O04b2a3

0a1 þ 3
2O
04a2

0 � 1
2O
04a2

0n� 3
2O
02a6

0b
2��þ Oð�2Þ ¼ 0.

Balancingterms at Oð1Þ we get a0 ¼ �
ffiffiffiffi
O0
b

q
. Using this in the Oð�Þ term we get a1 ¼ �1

2

ffiffiffiffi
b
O0

q
. Thus,

k ¼

ffiffiffiffiffiffiffi
O0�
b

s
� 1

2

ffiffiffiffiffiffiffi
b
O0�

r
�

Hence, the flexural wavenumber for high frequencies (denoted by kB ) is given by

kB ¼

ffiffiffiffi
O
b

s
� 1

2

ffiffiffiffi
b
O

r
(4)

Box 2
Derivation of the asymptotic expressions for the in vacuo longitudinal and torsional
wavenumbers of a cylindrical shell vibrating in the beam mode (n ¼ 1) at high frequencies.

We substitute O ¼ O0=� and k ¼ k=� in equation (3). In the resulting expression we put k ¼ a0þ
a2�

2 and perform a series expansion about � to get an equation involving various orders of �.

Solving the Oð1Þ equation we get a0 ¼ �O0;�
ffiffiffiffiffiffi

2
1�n

q
O0. Putting a0 ¼ O0, the solution for the Oð�2Þ

equation gives a2 ¼ � 1
2O0. Thus, we get the wavenumber corresponding to the longitudinal

wave (denoted by kL) as

k ¼ O0 � 1

2O0
�2;) kL ¼ O� 1

2O
. (5)

Similarly,putting a0 ¼
ffiffiffiffiffiffi

2
1�n

q
O0, the solution for the Oð�2Þ equation gives

a2 ¼
1

32

ð2� 2nÞ7=2

ð�1þ 3n� 3n2 þ n3ÞO0 .

Thus, the wavenumber corresponding to the torsional wave is given by

kT ¼
ffiffiffiffiffiffiffiffiffiffiffi

2

1� n

r
Oþ 1

32

ð2� 2nÞ7=2

ð�1þ 3n� 3n2 þ n3ÞO . (6)
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Fig. 2. In vacuo wavenumbers for an infinite cylindrical shell with h=a ¼ 0:05 and n ¼ 0:25 (a) bending wavenumber given by equation (4)

(b) longitudinal wavenumber given by equation (5) (c) torsional wavenumber given by equation (6).
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2.2.2. Bending wavenumber at low frequencies ðkBÞ

At low frequencies, the in vacuo cylindrical shell vibrating in the first circumferential mode (n ¼ 1) has only
one propagating (real) wavenumber. This wavenumber (denoted by kB) is close to the wavenumber of a beam
with an annular cross-section of radius a and thickness h [19]. In the following, using the shell equations, we
shall find an asymptotic expression for kB for small values of the shell thickness parameter.

From the Euler–Bernoulli beam theory, the bending wavenumber for a beam with annular cross-section of
radius a and thickness h is found to be 21=4

ffiffiffiffi
O
p

(see Fahy [22] for details). Using Rayleigh theory, which
includes the rotary inertia of the beam cross-section but neglects the shear deformation, the dispersion relation
for the beam is given by [23,24]

k4 � O2k2 � 2O2 ¼ 0. (7)

Also, the dispersion relation for the beam using Timoshenko beam theory is [25]

k4 � 1þ
2ð1þ nÞ

k

� �
k2O2 � 2O2 þ

2ð1þ nÞO4

k
¼ 0, (8)

where, k ¼ 2ð1þ nÞ=ð4þ 3nÞ is the shear coefficient for the beam cross-section [26]. The one and two term
asymptotic expressions for kB will be shown to be close to the wavenumbers predicted by the Euler–Bernoulli
and the Timoshenko theories, respectively.

To capture the low-frequency behavior, we scale O as �O0, where 0o�51 is a small quantity and O0 is an
Oð1Þ quantity. To find the wavenumber near the bending wavenumber, we scale the non-dimensional
wavenumber as k ¼

ffiffi
�
p

k. Physically, we know that the wavenumber we are looking for exists for small values
of the shell thickness parameter (b). We incorporate this into the model by assuming b ¼ �b. Making these
substitutions in Eq. (3) and using a regular perturbation method with � as the perturbation parameter, we get
the bending wavenumber for low frequencies as given in Eq. (9). Details of the derivation are shown in Box 3.

The numerical solution of Eq. (3) (Donell–Mushtari model) is compared with the Flugge model solution in
Fig. 3 (see Ref. [20] for the Flugge model). Overlaid on the plot are the wavenumbers obtained from the
Euler–Bernoulli, the Rayleigh (solution of Eq. (7)) and the Timoshenko (solution of Eq. (8)) beam model. It is
observed that the one-term approximation matches with the wavenumber obtained from the Euler–Bernoulli
beam model, whereas the two-term approximation is in agreement with the shell theory and the Timoshenko
theory for low frequencies (Oo0:4).

As observed by Forsberg [27], for beam-type vibrations of circular cylindrical shells, the shell theory
automatically includes the rotary inertia and the shear deformation effects on the overall cross-section. Hence,
the shell theory results match with the results of the Timoshenko model.

In Fig. 4, the bending wavenumber is plotted for the entire frequency range. For low frequencies (Oo0:5)
we use the asymptotic expression (9), whereas for high frequencies (O43) we use the asymptotic expression in
Eq. (4). In the intermediate range, the roots are found by numerical solution. It may be observed from the plot
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Box 3
Derivation of the asymptotic expressions for the in vacuo bending wavenumbers of a
cylindrical shell vibrating in the beam mode (n ¼ 1) at low frequencies.

We substitute O ¼ �O0, b ¼ �b and k ¼
ffiffi
�
p

k in Eq. (3). In the resulting expression we put k ¼
k0 þ �k1 and perform a series expansion about �. Collecting coefficients at each order of �, we
find

ðnO02 � 1
2n

2k4
0 � 1

2nk
4
0 þ 1

2n
3k4

0 � O02 þ 1
2b

2 � 1
2nb

2 þ 1
2k

4
0Þ þ ð2k3

0k1 þ 2b2k2
0 þ n2O02k2

0 � 2n2k3
0k1

þ 3
2nO

02k02 � 2nb2k2
0 � 2nk3

0k1 þ 2n3k3
0k1 � 5

2O
02k2

0Þ�þ Oð�2Þ
¼ 0.

Equating coefficients at Oð1Þ we get k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2O02 � b2Þ=ð1� n2Þ4

q
. Using this value of k0 and

equating coefficients at Oð�Þ, we get k1 ¼ � 1
4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2O02þb2Þ=ðn2�1Þ4
p ð2nO02�4b2þ5O02Þ

n2�1
.

Having obtained k (from k0 and k1), we resubstitute O0 ¼ O=�, b ¼ b=� and k ¼ k=
ffiffi
�
p

, to get k.
The following two cases arise depending on whether we take a one or two term approximation
for k:

kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2O2 � b2

1� n2

4

r
� ð2nO

2 � 4b2 þ 5O2Þ
4ðn2 � 1Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2O2 � b2

1� n2

4

r two-term approximation;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2O2 � b2

1� n2

4

r
one-term approximation:

8>>>>>><
>>>>>>:

(9)
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Fig. 3. Low frequency in vacuo bending wavenumber for an infinite cylindrical shell with h=a ¼ 0:05 and n ¼ 0:25.
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that around O � 1, the nature of the transverse wave changes from the bending wave in a beam with an
annular cross section of radius a and thickness h (h5a) to flexural waves in a plate of thickness h [19].

3. The coupled problem

The derivation of the coupled dispersion relation in a fluid-filled cylindrical shell for a general
circumferential mode of order n has been presented by Fuller and Fahy [1]. The governing differential
equation for an infinite fluid-filled cylindrical shell is given by Eq. (2) with the L33 term modified as shown
below

L33 ¼ �O2 þ 1þ b2ðk2 þ 1Þ2 �
O2

x

rf a

rsh

� �zfflfflffl}|fflfflffl{m

J1ðxÞ
J 01ðxÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼F

; where x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL

cf

� �2

O2 � k2

s
. (10)

The coupled dispersion equation is thus obtained as

jLj ¼ 0, (11)

where L33 is given by Eq. (10) and all other components are given by Eq. (2). For brevity, we use the notations
F, m and x as indicated in Eq. (10). The ratio of extensional wave speed in the structure to the acoustic wave
speed in the fluid will be denoted by c. As seen from Eq. (10), the fluid loading term directly affects the flexural
equation. Hence, in the following we shall confine our interest to flexural waves.

Depending on the value of c (viz. cL=cf ), the following situations can arise:
1.
 The acoustic cut-on intersects the in vacuo structural wavenumber branch only at a high frequency. For
none of the cut-ons is there an intersection between the wavenumber branches at low frequencies. This
happens when for a fixed structure, the sound speed is relatively high. This is demonstrated in Fig. 5a for
the first and the second rigid-duct cut-ons.
2.
 For the other extreme, viz. when cb1, the acoustic cut-on frequency is lowered. Hence, the coincidence
between the lower order acoustic cut-ons and the in vacuo structural wavenumber occurs at a low
frequency. However, the higher order cut-on branches intersect with the in vacuo structural wavenumber
branch at high frequencies. Fig. 5b shows the low frequency first and second cut-ons along with a high
eighth-order cut-on wavenumber.
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Fig. 5. Various coincidence conditions possible between the flexural wavenumber and the acoustic wavenumbers. Parameters chosen are

h=a ¼ 0:05 and n ¼ 0:25: (a) cL=cf ¼ 3, (b) cL=cf ¼ 12 and (c) cL=cf ¼ 5.

Table 2

Notation for the uncoupled wavenumbers and the corresponding coupled wavenumbers

Wavenumber Uncoupled Coupled

High frequency Low frequency High frequency Low frequency

in vacuo bending kB kB kBðmÞ kBðmÞ
First rigid acoustic cut-on kr

1 kr
1ðmÞ

First pressure-release acoustic cut-on kp
1 kp

1ðmÞ
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3.
 For intermediate values of c, the acoustic wavenumber of a lower order cut-on mode may intersect the in

vacuo structural wavenumber branch at three frequencies: the first higher than unity, the second near unity
and the third lower than unity. This is demonstrated in Fig. 5c for c ¼ 5 for the first rigid-duct cut on mode.
Note, in this case also the higher order modes intersect the structural wavenumber at higher frequencies
only.

In this article, the coupled wavenumbers of the system in Fig. 1 are sought as perturbations to the
uncoupled wavenumbers found in Section 2. The perturbation will be a function of the fluid-loading
parameter m. We follow a naming convention for the coupled waves. For example, the coupled wavenumber
branch which is near the in vacuo structural wavenumber will be referred to as the ‘‘coupled structural
wavenumber’’, and so on. See Table 2 for notation. Further, in this article, only the coupled structural
wavenumber and the first acoustic cut-on (rigid-duct and pressure-release) will be presented. The methodology
for the higher order cut-ons is essentially the same.

For numerical validation, as in Section 2, the structural parameter values h=a ¼ 0:05 and n ¼ 0:25 are
used for all plots to be presented later. So as to get two extreme coincidence conditions discussed above (items 1
and 2), the values c ¼ 3 and 12 will be used. Just as was done for the uncoupled structural wavenumbers in
Section 2.2, the asymptotics on the coupled wavenumbers will be presented separately for the low- and high-
frequency ranges.

As discussed earlier, depending on the value of c, the coincidence between the structural and the acoustic
waves occurs at low or at high frequencies (indicated in Fig. 6 left side). Hence, the derivations to follow are
partitioned into a high- and a low-frequency section, each one further having a small m and a large m section
(indicated in Fig. 6 top right side). By using order analysis arguments separately for the high and the low
frequencies, the unwieldy coupled dispersion relation will be simplified. Next, for each frequency range,
separate asymptotic expansions will be found for small and large values of m. For both the high- and low-
frequency ranges, the following results shall be found through the subsequent derivations (a) with small m, the
coupled wavenumbers are perturbations to the in vacuo bending wavenumber and the wavenumbers of the
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rigid acoustic cut-on (b) with large m, the coupled wavenumbers are perturbations to the wavenumbers of the
pressure-release acoustic cut-ons. This common characteristics of the coupled wavenumbers for both the high-
and low-frequency ranges is indicated schematically in a common inset picture (on the bottom right side) in
Fig. 6. Accompanying each numerical result in a subsection, a similar relevant schematic diagram will be
presented indicating the results found in that subsection.
3.1. High-frequency range

At high frequencies (and hence at high wavenumbers), an order analysis argument is used to simplify the
coupled dispersion Eq. (11). This is explained in Box 4.

With the simplifications shown in Box 4, the coupled dispersion equation is given by

ð�O2 þ k2Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{L

�O2 þ
1� n
2

k2
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

ð�O2 þ b2k4Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{B

x J 01ðxÞ
zffl}|ffl{R

�mO2 J1ðxÞ|ffl{zffl}
P

2
64

3
75 ¼ 0; where m ¼

rf a

rsh
. (13)

The physical relevance of each term in the equation above is described as follows:
1.
 The roots of L represent the wavenumbers of the longitudinal wave in the shell wall in the high-frequency
limit. This is the first-order term in Eq. (5).
2.
 The roots of T represent the wavenumbers of the torsional wave. This is the first-order term in Eq. (6).

3.
 The roots of B represent the in vacuo flexural wavenumbers in the cylindrical shell. This is the first-order

term in Eq. (4).
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Box 4
Simplifications of elements of L for the high-frequency range using order analysis.

For obtaining the wavenumbers at high frequencies, we substitute O by O=�, where � is a small
number (0o�51). For the coupled wavenumber near the in vacuo flexural wave we substitute k
by k=

ffiffi
�
p

, whereas for the coupled wavenumber near the acoustic waves we substitute k by k=�.
Thus, we have the following two cases.
1. For the bending wave we have

L11 ¼ �O2 þ k2 þ ð1� nÞ=2 � Oð1=�2Þ þ Oð1=�Þ; L12 ¼ L21 � Oð1=
ffiffi
�
p
Þ,

L33 � Oð1=�2Þ þ Oð1=�2Þ þ OðFÞ � Oð1=�2Þor more depending on the order ofF,

L22 � Oð1=�2Þ; L23 ¼ L32 ¼ Oð1Þ; L13 ¼ L31 ¼ Oð1=
ffiffi
�
p
Þ.

We choose to keep terms of Oð1=�Þ or higher. Thus, all off-diagonal terms are discarded.
Also, within the diagonal terms we have the following simplifications:

L11 ¼ �O2 þ k2; L22 ¼ �O2 þ 1� n
2

k2; L33 ¼ �O2 þ b2k4 þF. (12)

2. For the acoustic waves we have
L11 ¼ �O2 þ k2 þ ð1� nÞ=2 � Oð1=�2Þ; L12 ¼ L21 � Oð1=�Þ,

L33 � Oð1=�2Þ þ Oð1=�4Þ þ OðFÞ � Oð1=�4Þor more depending on the order of F,

L22 ¼� Oð1=�2Þ; L23 ¼ L32 ¼ Oð1Þ; L13 ¼ L31 ¼ Oð1=�Þ.

We choose to keep the term of Oð1=�2Þ or higher. Thus, all off-diagonal terms are discarded.
Also, within the diagonal terms we have the same simplifications as given in Eq. (12).

Thus, for the high-frequency analysis, we shall choose the off-diagonal terms to be zero and the
diagonal terms to be given by Eq. (12).
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4.
 The roots of R are the wavenumbers corresponding to the cut-on modes of the rigid-walled acoustic duct
(see Eq. (1a)).
5.
 The roots of P are the wavenumbers corresponding to the cut-on modes of the pressure-release acoustic
duct (see Eq. (1b)).
It may be seen from Eq. (13) that the longitudinal and the torsional wavenumbers are not affected by fluid-
loading at first order. A subset of Eq. (13) (repeated below) gives the coupled flexural and acoustic
wavenumbers

ð�O2 þ b2k4Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{B

x J 01ðxÞ
zffl}|ffl{R

�mO2 J1ðxÞ|ffl{zffl}
P

2
64

3
75 ¼ 0. (14)

Note, that with m ¼ 0, a root of Eq. (14) is given by x ¼ 0, which is the plane wave solution. At this

condition, a trivial solution is obtained since pðr; yÞ ¼ J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2=c2f � k2

x

q
rÞ cosðyÞ ¼ J1ð0Þ cosðyÞ is zero

throughout the cylindrical cavity.
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3.1.1. Small m
3.1.1.1. Coupled bending wavenumber kBðmÞ. The coupled bending wavenumber is given by

kBðmÞ ¼

ffiffiffiffi
O
b

s
þ

1

4b2
O2J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oðc2Ob�1Þ

b

q� 	
b
O

� 	3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O c2Ob�1ð Þ

b

q
J 01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oðc2Ob�1Þ

b

q� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

correction factor

mþ Oðm2Þ; where c ¼
cL

cf

. (15)

Details of the derivation are presented in Box 5. Thus, at first order, kBðmÞ gives the in vacuo bending
wavenumber (as in Eq. (4)). The m-dependent correction factor captures the fluid-loading effect. It is mass-like
when positive and stiffness-like when negative.

The in vacuo bending wavenumber intersects the wavenumber corresponding to rigid-walled cut-ons at

Or
n ðn ¼ 1; 2; . . .Þ, the rigid-duct coincidences. At these frequencies, from Eq. (1a) J 01ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � k2

p
Þ ¼ 0. Moreover,

the flexural wavenumber k �
ffiffiffiffiffiffiffiffiffi
O=b

p
at these coincidences. Using these values we have, J 01ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � O=b

q
Þ ¼ 0,

and thus the denominator of Eq. (15) approaches zero and the expression becomes invalid.
Similar invalidations of asymptotic solutions around certain frequencies occur at various places in the

subsequent derivations. This type of breakdown of a solution is typical in asymptotic methods. A detailed
description of the reasons can be found in Ref. [28, p. 8]. Here, we just mention that an alternative asymptotic
expansion incorporating a different scaling of the asymptotic parameter can be found for the frequencies (like
Or

n) where the basic asymptotic expansion fails. Such alternative expansions have been worked out for the
simpler case of plate geometry [17] and also for a fluid-filled cylindrical shell vibrating in the axisymmetric
mode [18]. To keep the article length within limits, instead of a full derivation, we shall use a continuity
argument to determine the nature of the coupled wavenumbers at frequencies (for e.g. O � Or

n) where the basic
asymptotic solution fails.

Similarly, the numerator of the correction term approaches zero at the frequencies where the wavenumber
of the in vacuo bending wave equals that of the pressure-release acoustic cut-ons. These pressure-release
Box 5
Derivation of the asymptotic expressions for the coupled wavenumbers kBðmÞ and kr

1ðmÞ at high
frequencies for small m.

We use J 01ðxÞ ¼ J0ðxÞ � J1ðxÞ=x in Eq. (14) and substitute k ¼ a0 þ a1m. Series expansion about

m gives an equation involving various orders of m. The equation at Oð1Þ has a solution a0 ¼ffiffiffiffiffiffiffiffiffi
O=b

p
corresponding to the in vacuo flexural wave. Using this value for a0, we get at OðmÞ the

following solution for a1:

a1 ¼
1

4b2

O2J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oðc2Ob�1Þ

b

q� 	
b
O

� 	3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oðc2Ob�1Þ

b

q
J 01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oðc2Ob�1Þ

b

q� 	 .

Similarly,the Oð1Þ equation has roots a0 such that J 01ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
Þ ¼ 0. These are the

wavenumbers for the rigid-walled acoustic duct (see Eq. (1a)). For each value of a0 found, the
value of the corresponding a1 may be obtained from the OðmÞ equation. For example, for the

first cut-on wave a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 1:8412

p
and

a1 ¼
0:5819O2

0:4102ð�O2 þ b2ðc2O2 � 3:389Þ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 3:389

p .
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coincidence frequencies will be denoted by Op
n ðn ¼ 1; 2; . . .Þ, where n denotes the order of the cut-on. Note,

Or
1oOp

1oOr
2oOp

2 . . . : The correction term switches sign at each pressure-release coincidence (Op
n). Hence, the

nature of fluid-loading (in the form of additional mass or stiffness on the structure) changes on either side of
Op

n. At Op
n, the correction term being zero, the effect of fluid-loading is not perceived by the structure.

The correction factor to the in vacuo bending wavenumber caused due to the fluid-loading effect is plotted in
Fig. 7. Thus, below Or

1 (in the figure we have shown till O ¼ 7) the fluid-loading is mass-like, while above Or
1

the fluid-loading nature is alternately mass-like and stiffness-like. The presence of alternate mass-loading and
stiffness-loading frequency regions is typical in structural systems. As examples, we may cite the following
examples: spring-mass system backed by an acoustic cavity [22], two-dimensional waveguide [17], fluid-filled
cylindrical shell vibrating in the axisymmetric mode [18].

In Fig. 8a, we compare the asymptotic solution obtained in Eq. (15) with that obtained through numerical
solution of the coupled dispersion equation (11) for m ¼ 0:2. Due to the reasons cited above, the plot is done in
two parts (a) frequency below Or

1 � 7:7 (b) frequency between 7:8 ð4Or
1Þ and 8:05oOr

2. The frequency range
7:7oOo7:8 is left out in the above plot as this frequency range is near Or

1 and hence the asymptotic solution is
not applicable in this range. A schematic presentation of these results is shown in Fig. 9a.

3.1.1.2. Coupled acoustic rigid-duct wavenumber (kr
1ðmÞ). kr

1ðmÞ (see Table 2 for notation) is given by

kr
1ðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2LO

2

c2f
� 3:389

s
þ

0:5819O2

0:4102ð�O2 þ b2ðc2O2 � 3:389Þ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 3:389

p
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

correction factor

mþ Oðm2Þ. (16)

Detailed derivation is shown in Box 5.
For the frequency range below Or

1, the in vacuo bending wavenumber is greater than the uncoupled rigid-
duct acoustic wavenumber and vice-versa. Approximating the in vacuo bending wavenumber as

ffiffiffiffiffiffiffiffiffi
O=b

p
(first-

order estimate from Eq. (4)), we find that below Or
1 we have O

24b2ðc2O2 � 3:389Þ2 which makes the correction
factor negative. Thus, the structure increases the speed (and hence incompressibility) of the fluid in this
frequency range. As the coupled wavenumber is decreased, this implies that the cut-on frequency is increased
due to the presence of the flexible structure. Similarly, for frequencies above Or

1 we have O
2ob2ðc2O2 � 3:389Þ2

which makes the correction factor positive. Hence, the sonic speed of the fluid decreases implying that the
influence of the structure is in the form of additional mass on the fluid.

At frequencies near Or
1 and the uncoupled cut-on frequency, the denominator approaches zero and hence

the correction factor blows up making the asymptotic expansion invalid near this frequency. An alternative
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scaling of the asymptotic parameter can give us a valid asymptotic solution for O � Or
1 [17,18]. Without

actually deriving it, we shall employ an intuitive continuity argument for determining the coupled
wavenumbers in the range O � Or

1.
The function given by the equation above is plotted in Fig. 8b along with the numerical solution of the exact

coupled dispersion equation (11) for m ¼ 0:2. From the plot it is clear that the asymptotic solution turns
invalid at frequencies near Or

1 � 7:75. A schematic of the results found for the coupled rigid-duct wavenumber
at high frequencies and small m limit is presented in Fig. 9b.

3.1.1.3. Continuity argument. It was earlier stated that at frequencies where the regular asymptotic
expansion fails (viz. Or

n) there are alternative expansions possible. Such expansions have been presented in
detail in Refs. [17,18]. Here we just mention that the coupled structural wavenumber branch below Or

n joins
with the coupled rigid-duct (nth mode) wavenumber branch above Or

n. Likewise, the coupled rigid-duct
(nth mode) wavenumber branch below Or

n joins with the coupled structural wavenumber branch above Or
n.
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This creates a gap around the coincidence frequency region with each physical branch (coupled structural or
coupled acoustic) encountering a jump at these frequencies. This is indicated in Fig. 9c (and repeated again in
Fig. 11a). This type of effect was also observed by Cabelli [15] and in our earlier works [17,18].

3.1.2. Large m
3.1.2.1. Coupled pressure-release wavenumber (kp

1ðmÞ). To model the effect of the large fluid-loading
parameter, we make the transformation m0 ¼ 1=m in Eq. (14), where 0om051. This results in the following
equation:

m0ð�O2 þ b2k4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � k2

p
J 01ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � k2

p
Þ � O2J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � k2

p
Þ ¼ 0; where c ¼

cL

cf

. (17)

Clearly, for m0 ¼ 0 the solutions are the acoustic wavenumbers of the pressure-release duct. With 0om051,
we expect coupled wavenumbers solutions to be close to these. We shall demonstrate the method for the first
pressure-release cut-on denoted by kp

1ðmÞ.
The details of the derivation are presented in Box 6. The final expression is

kp
1ðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 3:8322

p
þ

3:8322ðO2 � b2ðc2O2 � 3:8322Þ2Þ

O2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 3:8322

p
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

correction factor

1

m
. (18)

This expression is valid for all frequencies except the first cut-on frequency of the pressure-release duct,
where the denominator of the correction factor turns zero. Also, note that at the frequency of coincidence
Box 6
Derivation of the asymptotic expression for the coupled pressure-release wavenumber kp

1 ðmÞ
for the high-frequency range with large m.

Substituting k ¼ a0 þ a1m0 in Eq. (17) and performing a series expansion about m0 we get

�O2J1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
Þ

þ ð�O2 þ b2a4
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
J 01ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
Þ þ 1

2

O2a0a1ðJ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
Þ � J2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2O2 � a2
0

q
2
64

3
75m0

þ Oðm02Þ
¼ 0.

Using J0ðxÞ � J2ðxÞ ¼ J 01ðxÞ, we get

�O2J1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
Þ ¼ 0) a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 3:8322

p
,

ð�O2 þ b2a4
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � a2

0

q
þ O2a0a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2O2 � a2
0

q ¼ 0) a1 ¼
3:8322ðO2 � b2a4

0Þ
O2a0

. (19)

Thus,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 3:8322

p
þ 3:8322ðO2 � b2ðc2O2 � 3:8322Þ2Þ

O2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � 3:8322

p
" #

m0.
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between the in vacuo structural wave and the first acoustic pressure-release cut-on (denoted by Op
1), we have

O=b ¼ c2O2 � 3:8322. Thus, at the coincidence frequency, the correction factor is zero. For OoOp
1, the

structural wavenumber is greater than the acoustic wavenumber, hence the correction factor is positive,
whereas for O4Op

1, the correction factor is negative. This lowers the cut-on frequency. As before, the sign of
the correction factor decides the mass/stiffness effect of the structure on the fluid wavenumber.

The expression in Eq. (18) is plotted in Fig. 10 along with the numerical solution of the exact coupled
dispersion equation (11). In addition to kp

1ðmÞ, a coupled wavenumber branch greater than the in vacuo

structural wavenumber and the uncoupled wavenumber of the first rigid-duct cut-on mode exists when m is
large. Though by numerical solution this branch may be found, we have not been able to find the asymptotic
expression corresponding to this branch. The existence of this branch has been established by Fahy [22] for the
case of plane geometry. As we have observed, for high frequencies the dynamics of the cylinder is locally plate-
like. Thus, Fahy’s arguments can be extended for the present geometry also. From the small � analysis, we
observed that there is a wavenumber branch greater than kB and kr

1. The same branch exists as � continuously
increases to large values. Summarizing these observations, a schematic presentation of the results found for
the coupled wavenumbers for high frequency and large m is shown in Fig. 11b.
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Fig. 10. Coupled wavenumber corresponding to the first pressure-release acoustic duct cut-on mode (kp
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(indicated by arrows) from small m to large m.
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3.1.3. Transition from small m to large m
From Figs. 11a and b, we may deduce the nature of transition of the coupled wavenumbers as m increases

from small to large values. This is indicated in Fig. 11c. A general trend observed is that for small m, the
coupled wavenumbers are close to the in vacuo structural and the rigid-duct acoustic wavenumbers. As m
increases, they get perturbed further away, until at large m they can be better identified as perturbations to the
wavenumbers of the pressure-release acoustic duct.

3.2. Low-frequency range

From our study of the in vacuo cylindrical shell in Section 2, it was noted that at low frequencies, the shell
dynamics may be represented by the Timoshenko beam model. Physically, we know that the dynamics of the
beam is largely unaffected by the Poisson’s ratio ðnÞ. This is also seen from Fig. 12 and hence, we shall choose
n ¼ 0 in this part of the derivations.

The simplified coupled dispersion equation in this case is (see Box 7 for details)

ð�2O2 þ k4 þ b2 þ 4b2k2 � 5k2O2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Timoshenko beam

x J 01ðxÞ
zffl}|ffl{R

�mO2 J1ðxÞ|ffl{zffl}
P

ð2k2 � 3O2 þ k4 � 3k2O2 þ 1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Complex wavenumbers

¼ 0. (20)
3.2.1. Small m ðkBðmÞ, kr
1ðmÞ)

For m ¼ 0, we get the in vacuo structural wavenumber (kB � 21=4
ffiffiffiffi
O
p

, for small b) and the wavenumber of
the rigid-acoustic duct (given by the term R in the equation above). With 0om51, perturbations to these
wavenumbers (denoted by kBðmÞ and kr

nðmÞ, respectively) will be derived. As with the high-frequency analysis,
the roots of x represent the acoustic plane wave with zero pressure.

The final form of kBðmÞ is

kBðmÞ ¼ k0 �
O2J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � k2

0

q
Þð1þ 2k2

0 � 3O2 þ k4
0 � 3k2

0O
2Þ

ð�10k0O2 þ 4k3
0 þ 8b2k0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � k2

0

q
J 01ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2O2 � k2

0

q
Þ

, (21)

where k0 is the root of x4 � 5x2O2 þ b2 � 2O2 þ 4b2x2 ¼ 0.
The process of derivation is similar to the earlier ones and hence not presented. Due to the J 01 term in the

denominator of the correction factor, the asymptotic expression derived above again turns invalid at Or
n.
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Fig. 12. Effect of Poisson’s ratio on the low frequency in vacuo bending wavenumber.



ARTICLE IN PRESS

Box 7
Simplification of the coupled dispersion Eq. (11) for the low-frequency range.

Note, the scaling for the fluid-loading term viz. F ¼ �mO2J1ðxÞ=xJ 01ðxÞ is not known a-priori. We
shall scale the remaining variables as k ¼ k

ffiffi
�
p

(since we are looking for solutions near flexural
wavenumber), O0 ¼ O� and b ¼ b�. The determinant of the matrix L correct upto Oð�3Þ is

1
2Fþ �k

2Fþ 1
2�

2b2 þ 1
2�

2k4F� O02�2 � 3

2
O02�2Fþ 1

2�
2k4 þ 2�3b2k2 � 5

2�
3k2O02 � 3

2O
02�3k2F ¼ 0.

Thus,the approximate coupled dispersion equation valid for low frequencies is given by
�O2 þ 1

2k
4 þ 1

2b
2 þ 2b2k2 � 5

2k
2O2 þ ðk2 � 3

2O
2 þ 1

2k
4 � 3

2k
2O2 þ 1

2ÞF ¼ 0.
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The function obtained in Eq. (21) is plotted in Fig. 13a along with the numerical solution of the coupled
dispersion equation (11). As explained earlier, the solution blows up at the frequencies Or

1 and Or
2 (at the end

of the x-axis). The common features such as mass/stiffness loading of the structure by the fluid through sign
change around Op

1 may be noted.
Similarly, the coupled rigid-duct acoustic wavenumber (kr

1ðmÞ) can be obtained. The expression is too
unwieldy to be presented here. The function is plotted in Fig. 13b along with the numerical solution of
Eq. (11). As in the high-frequency analysis, the asymptotic expression obtained is invalid at frequencies
close to the uncoupled cut-on frequency and the coincidence frequency Or

1. It can be seen that the uncoupled
cut-on frequency is nearly equal to the coincidence frequency for this case. Hence, the asymptotic expansion is
valid only for O4Or

1. Also, note that for O4Or
1, the coupled wavenumber kr

1ðmÞ is greater than the
corresponding uncoupled wavenumber kr

1. Through numerical analysis (not presented here) it is found
that below Or

1 the coupled wavenumber kr
1ðmÞ is less than the corresponding uncoupled wavenumber kr

1

and consequently the cut-on frequency is increased due to the fluid–structure coupling. These observations
are thus similar to those obtained for the high-frequency analysis. A similar analysis can be carried for other
cut-ons.
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Using continuity arguments similar to that presented earlier, we can find the coupled wavenumber solutions
(for both the structural and the acoustic wavenumbers) for O � Or

n. A schematic of the complete results
obtained for the case of low frequency small fluid-loading parameter is shown in Fig. 15a.

3.2.2. Large m (kp
1ðmÞ)

As m!1 in Eq. (20), the solution approaches the wavenumber of the pressure-release acoustic duct. For
large m, the coupled wavenumbers (kp

1ðmÞ) may be found as perturbations to these. The procedure is similar
to that presented in the high-frequency analysis. The expression obtained in this case is too unwieldy to
be presented here. A plot of the expression is shown in Fig. 14 along with the numerical solution. As with
the high-frequency analysis, the asymptotic expression for this case is valid beyond the cut-on frequency
(for Fig. 14 this is O40:5). In this range, the coupled wavenumber (kp

1ðmÞ) is less than the uncoupled pressure-
release wavenumber (kp

1). Also, through numerical analysis it is verified that analogous to the high-frequency
analysis, below Op

1, k
p
1ðmÞ4kp

1 and consequently the cut-on frequency is decreased due to the coupling.
Also, note that the polynomial term multiplying the J1 term in Eq. (20) does not have any real root. Thus,

the only real root for the coupled system is that described above.
Similar to the high-frequency analysis, we have numerically obtained a coupled wavenumber branch greater

than the in vacuo structural wavenumber and the wavenumber of the first rigid-duct cut-on. We have been
unable to obtain the asymptotic expression corresponding to this branch. Summarizing these results we
present a schematic for the low-frequency large m derivations in Fig. 15b. As with the high-frequency analysis,
the results of transition of low-frequency coupled wavenumbers from small to large m is summarized in
Fig. 15c.

4. Conclusions

In this article, coupled wavenumber solutions for a fluid-filled infinite cylindrical shell vibrating in the beam
mode are found using an asymptotic method. While numerical solutions to this problem are known, use of the
asymptotic method to find the analytical expressions is novel. The asymptotic method leads to coupled
wavenumber expressions which are modifications over the in vacuo structural wavenumbers and the
wavenumbers of the rigid-walled or pressure-release acoustic duct. The additional mass or stiffness effect
perceived by the structure and the fluid due to the coupling effect is borne out by the sign of the correction
factor. This approach provides better physical insights into the behavior of fluid–structure coupling in a
curved geometry. Though this study was exclusively for the beam mode (n ¼ 1), the method can be carried
over to higher order modes (n41) also.
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A. Sarkar, V.R. Sonti / Journal of Sound and Vibration 319 (2009) 646–667 665
Initially, the uncoupled dispersion characteristics of the acoustic fluid and the cylindrical shell structure are
presented. For the acoustic medium, closed form expression for the wavenumbers are well-known. However,
for the in vacuo cylindrical shell, the dispersion relation is complicated and unwieldy. Using asymptotic
methods, simple closed form expressions for the in vacuo shell wavenumbers (longitudinal, torsional and
bending) are derived for low and high frequencies. It is shown that for low frequencies (O51) the in vacuo shell
behaves as a Timoshenko beam, whereas, for high frequencies (Ob1) the shell behavior is like a plate of the
same shell thickness.

For both the extremes of the frequency range, we find that under the influence of small fluid-loading
(characterized by small m) the corresponding in vacuo structural wavenumbers (longitudinal, bending and
torsional) get modified. However, the coupling-effect is most dominant for the bending waves. The
modification in the form of asymptotic expressions to the in vacuo bending wavenumber and the waveumbers
of the uncoupled rigid acoustic duct are found for both high and low frequencies.

These asymptotic expressions are valid for all frequencies other than the rigid-duct coincidences (Or
n) and

the cut-on frequencies of the rigid acoustic duct. Near the coincidence frequencies we use a continuity
argument to prove that the structural wavenumber branch below coincidence merges with the acoustic branch
beyond coincidence and vice-versa. This creates a gap in the coincidence frequency region. Such a
phenomenon is commonly known as the curve-veering effect in literature. Also, it is found that the cut-on
frequency of the rigid acoustic duct increases due to the presence of the structure.

The other extreme of large fluid-loading (characterized by large m) is also analyzed separately for high and
low frequencies and appropriate analytical expressions are derived. It is found that the coupled wavenumbers
in this case are perturbations of the wavenumbers of the pressure-release acoustic duct. Also, beyond the
pressure-release coincidences (Op

n) the coupled wavenumbers are less than the uncoupled pressure-release
wavenumbers and vice-versa. The cut-on frequency of the pressure-release acoustic duct decreases due to the
fluid–structure coupling.

For all frequencies and for all m, there exists a coupled wavenumber branch greater than any of the
uncoupled wavenumbers. Fahy [22] showed the existence of this coupled wavenumber branch for the case of a
flat plate. We have found asymptotic expressions (for both high- and low-frequency limits) for this branch for
the small m case. For large m, this branch was found numerically.

From the final results obtained (see Fig. 16), we observe that the nature of the coupled wavenumbers is
qualitatively identical for both high and low frequencies. The difference lies in the behavior of the cylindrical
shell structure. For low frequencies, the shell has a beam-like dynamics (the cross-section moves in unison in
the transverse direction) whereas for high frequencies the structure has plate-like dynamics (each point in the
cross-section moves in the radial direction) [19]. The general trend for small m is that the coupled wavenumbers
are close to the in vacuo structural wavenumber and the wavenumbers of the rigid-acoustic duct. With
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Fig. 16. The coupled wavenumber solutions found for high and low frequencies. Arrows indicate transition of solutions as the fluid-

loading parameter increases.
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increasing m, the perturbation increases until the coupled wavenumbers are better identified as perturbations
to the pressure-release wavenumbers.

Acknowledgment

We thank the reviewers for the time, effort and valuable comments. Due to their suggestions, the quality of
the article has improved.
References

[1] C.R. Fuller, F.J. Fahy, Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid,

Journal of Sound and Vibration 81 (4) (1982) 501–518.

[2] G. Pavic, Vibrational energy flow in elastic circular cylindrical shells, Journal of Sound and Vibration 142 (2) (1990) 293–310.

[3] L. Feng, Acoustic properties of fluid-filled elastic pipes, Journal of Sound and Vibration 176 (3) (1994) 399–413.

[4] M. Maess, N. Wagner, L. Gaul, Dispersion curves of fluid-filled elastic pipes by standard FE models and eigen path analysis, Journal

of Sound and Vibration 296 (2006) 264–276.

[5] A.H. Nayfeh, Problems in Perturbation, Wiley, New York, 1985.

[6] D. Blackstock, M. Hamilton, Nonlinear Acoustics, Academic Press, New York, 1998.

[7] P.M. Morse, K.U. Ingard, Theoretical Acoustics, McGraw-Hill Book Company, New York, 1968.

[8] D.G. Crighton, The 1988 Rayleigh medal lecture: fluid loading—the interaction between sound and vibration, Journal of Sound and

Vibration 133 (1) (1989) 1–27.

[9] C.J. Chapman, S.V. Sorokin, The forced vibration of an elastic plate under significant fluid loading, Journal of Sound and Vibration

281 (2005) 719–741.

[10] J.F.M. Scott, The free modes of propagation of an infinite fluid-loaded thin cylindrical shell, Journal of Sound and Vibration 125 (2)

(1988) 241–280.

[11] Y.P. Guo, Asymptotic solutions for helical wavenumbers of waves in fluid-loaded cylindrical shells, Wave Motion 22 (1995) 97–107.

[12] L. Huang, Y.S. Choy, R.M.C. So, T.L. Chong, Experimental study of sound propagation in a flexible duct, Journal of the Acoustical

Society of America 108 (2) (2000) 624–631.

[13] S. Choi, Y.H. Kim, Sound wave propagation in a membrane duct, Journal of the Acoustical Society of America 112 (5) (2002)

1749–1752.

[14] M.K. Au-Yang, The hydrodynamic mass at frequencies above coincidence, Journal of Sound and Vibration 86 (2) (1983) 288–292.

[15] A. Cabelli, The propagation of sound in a square duct with a non-rigid side wall, Journal of Sound and Vibration 103 (3) (1985)

379–394.



ARTICLE IN PRESS
A. Sarkar, V.R. Sonti / Journal of Sound and Vibration 319 (2009) 646–667 667
[16] S.H. Ko, Sound wave propagation in a two dimensional flexible duct in the presence of an inviscid flow, Journal of Sound and

Vibration 175 (2) (1994) 279–287.

[17] A. Sarkar, V.R. Sonti, An asymptotic analysis for the coupled dispersion characteristics of a structural acoustic waveguide, Journal of

Sound and Vibration 306 (2007) 657–674.

[18] A. Sarkar, V.R. Sonti, Asymptotic analysis for the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell: the

axisymmetric mode, Computer Modeling in Engineering and Sciences 21 (3) (2007) 193–207.

[19] C.R. Fuller, The effect of wall discontinuities on the propagation of flexural waves in cylindrical shells, Journal of Sound and Vibration

75 (2) (1981) 207–228.

[20] A. Leissa, Vibration of shells, Technical Report NASA SP-288, 1973.

[21] L.H. Donell, Beams, Plates and Shell, McGraw-Hill Book Company, New York, 1976.

[22] F.J. Fahy, Sound, Structure and their Interaction: Radiation, Transmission and Response, Academic Press, London, 1989.

[23] S. Timoshenko, D.H. Young, Vibration Problems in Engineering, D. Van Nostrand Co, Princeton, 1955.

[24] A. Kornecki, A note on beam-type vibrations of circular cylindrical shells, Journal of Sound and Vibration 14 (1) (1971) 1–6.

[25] K. Graff, Wave Motion in Elastic Solids, Clarendron Press, Oxford, 1975.

[26] R.D. Blevins, Formulas for Natural Frequencies and Mode Shapes, Van Nostrand Reinhold Company, New York, 1979.

[27] K. Forsberg, Axisymmetric and beam-type vibrations of thin cylindrical shells, AIAA Journal 7 (2) (1969) 221–227.

[28] E.J. Hinch, Perturbation Methods, Cambridge University Press, Cambridge, 1991.


	Asymptotic analysis for the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell: The beam mode
	Introduction
	Uncoupled analysis
	The uncoupled acoustic wavenumbers ( 1^r and  1^p)
	Uncoupled structural wavenumbers
	Structural wavenumbers at high frequencies ( B, L, T)
	Bending wavenumber at low frequencies (  B)


	The coupled problem
	High-frequency range
	Small  
	Coupled bending wavenumber  B( )
	Coupled acoustic rigid-duct wavenumber ( 1^r( ))
	Continuity argument

	Large  
	Coupled pressure-release wavenumber ( 1^p( ))

	Transition from small   to large  

	Low-frequency range
	Small   0.33em (  B( ),  1^r( ))
	Large   ( 1^p( ))


	Conclusions
	Acknowledgment
	References


